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Abstract. The second-class constraints algebra of the Abelian Chern–Simons (CS) theory is
studied rigorously in terms of Hamiltonian embedding in order to obtain a first-class constraint
system. The well known symplectic structure of the CS fields due to the second-class constraints
disappears in the resulting system. We then obtain a new type of CS action which has an infinite set
of irreducible first-class constraints and exhibits new extended local gauge symmetries implemented
by these first-class constraints.

Chern–Simons (CS) theories [1] have been rigorously studied in various arenas. One of the
intriguing problems of CS theories is that the CS Lagrangian, from the point of view of a
constrained system, gives the unusual second-class constraints even though it is invariant up to
a total divergence under the local gauge transformation. This peculiar property of CS theories
is essentially due to the symplectic structure [2] which is a key ingredient of CS systems.
Meanwhile, the second-class constraint system has been generically regarded as a gauge fixed
version of the gauge invariant system [3], which has been studied in the context of anomalous
gauge theory [4]. Therefore, CS theories may have some kind of unknown local symmetry
if second-class constraints are converted into first-class ones. This means that the intrinsic
symplectic structure of CS theories can be interpreted as a gauge fixed form of gauge invariant
theory which is symplectic-free. What then is the additional local symmetry in connection
with the symplectic structure?

It is, in general, difficult to convert the second-class constraint system even for the Abelian-
pure CS theory into a first-class one by using the usual Stückelberg mechanism [5] since
the origin of the second-class constraints algebra is unusual compared to the conventional
anomalous theory. On the other hand, Batalin, Fradkin and Tyutin (BFT) Hamiltonian
embedding of a model [8] is very useful and it converts systematically the second-class system
into a first-class one. According to the usual treatment [6, 7, 9–11] of the BFT formalism,
one simply identifies auxiliary fields with a pair of conjugate fields. This procedure in CS
theory, however, gives an undesirable final expression [6, 10] in that the original action has not
been reproduced when we choose the unitary gauge [6, 7] and the additional action so-called
Wess–Zumino (WZ) action, which is needed to make the system gauge invariant, is model-
dependent. Furthermore, the assumed brackets of the auxiliary fields are not Poisson but Dirac
brackets.

In this paper by introducing infinite auxiliary fields, we find a new type of WZ action
for the Abelian-pure CS theory so that the total system has fully first-class constraints which
have not been successful so far. This total action is naturally reduced to the original CS action
if one chooses unitary gauge conditions. Then, we obtain new symmetries corresponding to

0305-4470/99/122461+07$19.50 © 1999 IOP Publishing Ltd 2461



2462 Won Tae Kim et al

first-class constraints relating to the symplectic structure as well as the well known local U(1)
gauge symmetry.

Let us start with the Abelian-pure CS Lagrangian

L0 = κ

2
εµνρA

µ∂νAρ. (1)

The canonical momenta are given byπ0 = 0 andπi = (κ/2)εijAj . We then have three primary
constraints [12],�0 = π0 ≈ 0, �i = πi − (κ/2)εijAj ≈ 0 (i, j = 1, 2) and a secondary
constraint

�3 = κεij ∂iAj ≈ 0 (2)

which is obtained from the stability condition of time evolution of the constraint�0 with the
primary HamiltonianHp = Hc +

∫
d2x(v0�0 + vi�i). The canonical Hamiltonian is given

by Hc =
∫

d2xHc =
∫

d2x κA0εij ∂iA
j . No additional constraints are generated from the

consistency conditions of the other constraints�i and�3 by fixing the Lagrange multipliers
asvi = κ∂iA0.

To obtain the maximally irreducible first-class constraints [6, 10], we redefine the primary
and secondary constraints asω0 ≡ �0, ωi ≡ �i and

ω3 ≡ �3 + ∂i�i = ∂iπi +
κ

2
εij ∂

iAj ≈ 0. (3)

Eliminating the Lagrange multipliersvi yields the extended Hamiltonian density [13]
corresponding to the CS Lagrangian

HE = v0ω0 − (A0 − v3)ω3 (4)

where the Lagrange multipliersv0 andv3 remain undetermined. The extended Hamiltonian
now naturally generates the Gauss constraintω3 from the time evolution of the constraintω0

as

ω̇0 = ω3 ω̇α = 0 α = 1, 2, 3 (5)

where overdot represents the time evolution. We, therefore, have two first-class constraintsω0

andω3 and two second-class constraintsωi which satisfy the constraint algebra

1ij (x, y) ≡ {ωi(x), ωj (y)} = −κεij δ(x − y). (6)

Upon elimination of the momentaπi via the method of Dirac [12], we could easily obtain the
well known Dirac brackets for the gauge fieldsAi as{Ai(x), Aj (y)} = εij δ(x − y)/κ.

Compared to this phase space reduction, one can embed a second-class structure into a
first-class one by introducing auxiliary fields in BFT Hamiltonian embedding [8]. In order to
explicitly make the analysis, let us first rewrite the CS Lagrangian replacingAµ with A(0)µ as

L0 ≡ L(0) = κ

2
εµνρA

(0)µ∂νA(0)ρ . (7)

We now introduce auxiliary fieldsA(1)i to make the second-class constraintsωi into first-class
ones satisfying{A(1)i (x), A(1)j (y)} = ϑij (x, y). Making use of the auxiliary fieldsA(1)i ,
we could write the effective first-class constraints asω̃i(π

(0)
µ , A(0)µ;A(1)i ) = ωi +

∑
n $

(n)
i

satisfying the boundary conditioñωi(π(0)µ , A(0)µ; 0) = ωi as well as requiring the strong

involution, i.e.{ω̃i , ω̃j } = 0. Here$(n)
i is assumed to be proportional to(A(1)i )n. In particular,

the first-order correction in these infinite series is given by

$
(1)
i =

∫
d2y Xij (x, y)A

(1)j (y) (8)
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and the requirement of the strong involution gives the following condition

1ij (x, y) +
∫

d2u d2v Xik(x, u)ϑ
k`(u, v)Xj`(v, y) = 0. (9)

We take the simple solution ofϑij andXij as

ϑij (x, y) = εij δ(x − y) (10)

Xij (x, y) = −εij δ(x − y)/
√
κ. (11)

There is some arbitrariness in choosingϑij andXij from (9) as shown in the literature [6, 7, 9],
which is related to canonical transformation. For the choice of (10), equation (9) is simply
reduced to|detXij | = 1/κ and a convenient solution is given as equation (11).

By usingϑij and the solution ofXij in equations (10) and (11), we obtain the strongly
involutive first-class constraints which are only proportional to the first order of the auxiliary
fields, as

ω̃
(0)
i = π(0)i −

κ

2
εijA

(0)j −√κεijA(1)j = 0. (12)

The canonical Hamiltonian density is now given by

H̃c = κA(0)0εij ∂i
(
A(0)j +

1√
κ
A(1)j

)
(13)

satisfying{ω̃i , H̃c} = 0 and{ω0, H̃c} = {ω3, H̃c} = 0. The corresponding Lagrangian of
equation (13) with two auxiliary fieldsA(1)i is obtained through the usual path integral as
follows

L(1) = −κ
2
εijA

(0)i Ȧ(0)j + κA(0)0εij ∂
iA(0)j − 1

2
εijA

(1)i Ȧ(1)j +
√
κA(0)0εij ∂

iA(1)j

−√κεijA(1)i Ȧ(0)j . (14)

In the BFT Hamiltonian embedding of the model one has usually identified two auxiliary fields
A(1)i with a pair of conjugate fields as a coordinate and momentum [6, 7, 9–11]. However, we
would like to note that there is no general preference to choose them as the conjugate fields.

To clarify this problem, let us now study whether or not the Lagrangian (14) produces a
first-class constraint system at the Poisson bracket level which is an essential element of the BFT
formalism. The canonical momenta from (14) areπ(0)0 = 0,π(0)i = (κ/2)εijA(0)j +

√
κεijA

(1)j

andπ(1)i = (1/2)εijA(1)j . From the conditions of time stability of these primary constraints, we
can get one more secondary constraint and after redefining we can easily obtain the maximally
irreducible first-class constraints asω0 = π(0)0 ≈ 0,ω3 = ∂iπ(0)i + (κ/2)εij ∂iA(0)j ≈ 0 and

ω̃
(1)
i = π(0)i −

κ

2
εijA

(0)j −√κ
(
π
(1)
i +

1

2
εijA

(1)j

)
≈ 0 (15)

as well as the second-class constraints

ω
(1)
i = π(1)i − 1

2εijA
(1)j ≈ 0. (16)

Therefore, second-class constraints remain even after the first order of correction. On the other
hand, we can calculate the (preliminary) Dirac brackets as

{A(1)i , A(1)j }D = εij δ(x − y) (17)

which is the relation introduced in equation (10) to make the second-class constraintsωi into
first-class ones̃ω(0)i in the BFT formalism, i.e. the first-class constraintsω̃(1)i reduce toω̃(0)i if
we strongly impose the second-class constraints (16). As a result we observe that the auxiliary
fieldsA(1)i introduced to make second-class constraints into first-class ones do not provide
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Poisson but Dirac bracket structure. A similar feature appeared in chiral boson theory [14, 15]
and recently in string and D-branes theory [16]. This makes the BFT Hamiltonian embedding
of CS theory not to stop any finite number of steps. Therefore, these steps should infinitely
be repeated and thus one can construct an action which has fully first-class constraints by
introducing infinite auxiliary fieldsA(n)i . In this respect, all previous results [6, 7, 10] of BFT
formalism applied to CS cases are incomplete. Hence, the final action can be written

L = −κ
2
εijA

(0)i Ȧ(0)j + κA(0)0εij ∂
iA(0)j − 1

2
εij

∞∑
n=1

A(n)iȦ(n)j +
√
κA(0)εij

∞∑
n=1

∂iA(n)j

−√κεij
∞∑
n=1

A(n)iȦ(0)j − εij
∞∑
n=1

∞∑
m=n+1

A(m)iȦ(n)j . (18)

To examine whether or not equation (18) really gives a first-class constraint system, we
should check the constraint algebra by using Poisson brackets. The canonical momenta from
(18) are given by

π
(0)
0 = 0 π

(0)
i =

κ

2
εijA

(0)j +
√
κεij

∞∑
m=1

A(m)j π
(n)
i =

1

2
εijA

(n)j + εij
∞∑

m=n+1

A(m)j

(19)

wheren = 1, 2, . . . ,∞. We, thus, have the primary constraints

�0 = π(0) ≈ 0

�
(0)
i = π(0)i −

κ

2
εijA

(0)j −√κεij
∞∑
m=1

A(m)j ≈ 0

�
(n)
i = π(n)i −

1

2
εijA

(n)j − εij
∞∑

m=n+1

A(m)j ≈ 0 (20)

whose conditions of time stability give only one further constraint

�3 ≡ �̇0 = κεij ∂i
(
A(0)j +

1√
κ

∞∑
m=1

A(m)j
)
≈ 0 (21)

with primary Hamiltonian density

Hp = Hc + v0�0 +
∑
n,i

v(n)i�
(n)
i . (22)

The canonical Hamiltonian density is given byHc = κA(0)0εij ∂i(A(0)j +(κ)−1/2∑∞
m=1A

(m)j ).
The maximally irreducible first-class constraints are now obtained from redefining
equations (20) and (21) asω0 = π(0)0 ≈ 0,ω3 = ∂iπ(0)i + (κ/2)εij ∂iA(0)j ≈ 0 and

ω̃
(1)
i = π(0)i −

κ

2
εijA

(0)j −√κ
(
π
(1)
i +

1

2
εijA

(1)j

)
≈ 0

ω̃
(n+1)
i = π(n)i −

1

2
εijA

(n)j −
(
π
(n+1)
i +

1

2
εijA

(n+1)j

)
≈ 0 (23)

wheren = 1, 2, . . . ,∞ and the extended Hamiltonian density has the form

H̃E = λ0ω0 − (A(0)0 − λ3)ω3 +
∞∑
n=1

λ(n)i ω̃
(n)
i . (24)

These constraints are all involutive

{ω0, H̃E} = ω3 {ω3, H̃E} = 0 {ω̃(n)i , H̃E} = 0. (25)
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So, the new CS theory with infinite auxiliary fields now completely forms the first-
class constrained system and the strongly vanishing Poisson brackets betweenω0, ω3 and
equation (23).

It seems appropriate to comment on the constraints,ω0, ω3 and equation (23). The
constraintω3 is the usual Gauss constraint related to the time-independent gauge transformation
and it is not modified through BFT procedure. This reflects the maintenance of the well known
original U(1) gauge symmetry. On the other hand, the infinite number of first-class constraints
(23) are related to a kind of unknown local symmetry and thus the symplectic structure of the
original fields can be regarded as a gauge fixed structure of modified CS theory (18).

Now we are ready to discuss new local symmetries of our first-class action. The first-order
form of the action is described as

S =
∫

d3x

(
π
(0)
0 Ȧ(0)0 +

∞∑
n=0

π
(n)
i Ȧ(n)i − H̃E

)
. (26)

This action is invariant under the following gauge transformations

δA(0)0 = ε0

δA(0)i = −∂iε3 +
1√
κ
ε(1)i

δA(n)i = −ε(n)i + ε(n+1)i

δπ(0) = 0

δπ
(0)
i = −κ

2
εij ∂

j ε3−
√
κ

2
εij ε

(1)j

δπ
(n)
i = −1

2
εij
(
ε(n)j + ε(n+1)j

)
δλ0 = ε̇0

δλ(1)i = 1√
κ
ε̇(1)i δλ(n+1)i = ε̇(n+1)i

δλ3 = ε0 + ε̇3 n = 1, 2, . . . (27)

which are generated from the definition of gauge transformation generators as

G =
∫

d2x

(
ε0ω0 + ε3ω3 +

1√
κ
ε(1)i ω̃

(1)
i +

∞∑
n=2

ε(n)i ω̃
(n)
i

)
(28)

with infinitesimal gauge parametersε0, ε3 andε(n)i (n = 1, 2, . . . ,∞)where we have inserted
(κ)−1/2 in front of ε(1)i for convenience. The equations of motion of the Lagrange multipliers
λ(n)i give ω̃(n)i , whileλ(n)i themselves can be gauged away. Using the gauge conditionλ3 = 0
and thusδλ3 = 0 [13], equation (26) reduces to

S =
∫

d3x

(
π
(0)
0 Ȧ(0)0 +

∞∑
n=0

π
(n)
i Ȧ(n)i − λ0ω0 +A(0)0ω3−

∞∑
n=1

λ(n)i ω̃
(n)
i

)
(29)

by identifying ε0 = −ε̇3. Note that the partially gauge fixed action (29) is invariant under
residual gauge transformations. To exhausted all additional gauge degrees of freedom, we
choose gauge conditionsχ(n)i = π(n)i + (1/2)εijA(n)j ≈ 0, (n = 1, 2, . . .) with equation (23)
andλ(n)i = 0, similar to the case of chiral boson [15]. We can, therefore, recover the original
pure CS Lagrangian (1) maintaining only the usual U(1) gauge symmetry.

On the other hand, if one eliminatesπ(0)0 , π(0)i , π(n)i , λ0 andλ(n)i (n = 1, 2, . . .) from (29)
by means of their own equations of motion, one could get once again the desired action (18)
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and compactly rewrite it as follows

L = −κ
2
εij

(
A(0)i +

1√
κ

∞∑
n=1

A(n)i
)(
Ȧ(0)j +

1√
κ

∞∑
n=1

Ȧ(n)j
)

+κA(0)0εij ∂
i

(
A(0)j +

1√
κ

∞∑
n=1

A(n)j
)
. (30)

Then one can easily check that this action is invariant under the following local gauge
transformations

δA(0)0 = ∂03 δA(0)i = ∂i3 +
1√
κ
ε(1)i δA(n)i = −ε(n)i + ε(n+1)i n = 1, 2, . . .

(31)

where we simply defineε3 = −3. The transformation rules show the usual U(1) gauge
transformation with the gauge parameter3 and a new type of local symmetry withε(n)i .

It seems to be appropriate to comment on the Lorentz covariance of equation (30). In
BFT formalism, the non-covariance of the resulting action is mainly due to the non-covariant
property of the second-class constraintsωi in (6). To recover the Lorentz covariance of
the action, we should introduce an additional infinite number of auxiliary fields asA(0)0 →
A(0)0 +

∑∞
n=1A

(n)0. Then (30) could be covariantly written by the covariant transformation
rule. This including the non-Abelian extension has been studied in detail in [17].

In conclusion, we have found a new type of WZ action for the Abelian pure CS theory.
To make two initial second-class constraints originating from the symplectic structure into a
first-class system, we have introduced an infinite number of auxiliary fields via BFT formalism.
It is remarkable that not only is the original U(1) gauge symmetry preserved but there also
exist additional novel symmetries. Further, the derived WZ action is eventually independent
of field theoretic models which involve the CS term.
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